A#PINNACLE

Connecting to
Web Services

Zoran Zaev

Implementing Web Services in different languages (and platforms) isn't difficult, as

long as you have some familiarity with the particular language, the platform,and a

general knowledge of XML and SOAP. However, making sure that the different OCtOber 2001
systems can connect to each other can be more challenging. In this article, Zoran Yo s tanh 1

Zaev goes into more detail.
1 Connecting to

. . . . : : Web Services

N this article, I'll be covering different scenarios of systems using Soran Zaev

different languages, different platforms, and different object models.

You’ll see how they can all be brought to talk to each other. I'll start 5 Confessions of an XSLT Bigot:
with Visual Basic and the scripting languages: JScript, VBScript, and Perl. :Seg';;\;:‘)‘lfferemmthe
In future articles, I'll continue this exercise with other language and Michael Corning
platform combinations.

‘ The reason for this quest is that Web Services are most useful when 11 Your First SMIL
connecting systems based on different languages, operating systems, Pewecvong
and/ or object models. These include, but aren’t limited to, Microsoft’s 15 Calling from SOAP Clients
Component Object Model (COM), Common Object Model Request Broker Wayne Wallace
Architecture (CORBA), or Java’s Enterprise Java Bean (EJB) specification.
When faced with situations where you need to connect these different % Do 18 edi G

systems, Web Services offer standard mechanisms. This isn’t to say that
you shouldn’t use Web Services to connect systems based on the same
N programming language or object model. Similar systems can benefit from

the inherent loose coupling of the Web Services model. Aecompanyiog vl mincat
http://www.xmldevelopernewsletter.com

Loose coupling refers to systems where the
components can easily bind at runtime without the
need for additional steps (for instance, operating
system registration). The opposite is a tightly bound
system where the components of a system are bound
together at compile time or even at design time with
code that’s dependent on the internals of each
component. Loosely bound systems are easier to
modify because components can be plugged in and out
more easily, but they can be more difficult to develop.

In addition, using Web Services when building
systems based on similar technologies might be
beneficial if you plan or expect to have other systems
connect to your system in the future and you don’t
want to limit yourself to systems that only run on
your platform.

So, in this article, I'll create a simple Web Service
with Microsoft’s SOAP Toolkit 2 and Visual Basic 6.
Then, I'll show you how to connect to this Web Service
using Visual Basic 6, and some scripting languages, in
particular JScript within ASP, VBScript within ASP,
and Perl. In the next few months, I'll implement this
same Web Service in different languages and try to
access it from platforms other than the platform that
the service is running on. Through these articles, you'll
become familiar with what it takes to create a Web
Service in various languages and have it interoperate
with systems that aren’t necessarily the same as the
languages or platform used in the creation of the Web
Service itself. In addition to discussing particular
problems, I'll discuss some common interoperability
issues and ways to get around them.

The Microsoft SOAP Toolkit 2 was reviewed by
Wayne Wallace in the July 2001 issue of XML Developer.
While it shouldn’t be absolutely necessary, you might
want to review that article before continuing with this
one. In the August 2001 issue, Peter Vogel went further
into the details of creating a Web Service using the
Microsoft SOAP Toolkit 2, Visual Basic, and .NET
(“Creating a Web Service”). So I'll only briefly cover
the creation of the Web Service and spend much more
time on building the various client implementations to
focus on the interoperability issues.

The sample Web Service

My sample Web Service is a job submittal service,

part of a sample Job Bank system. Partners will be
allowed to submit new job postings to this Web Service.
You can easily imagine that companies that host job
banks could use this kind of a service to allow other
companies to submit new job postings. Of course, this
Job Bank is a sample application, and in a real-life
scenario you'd have more complex Web Services (and
likely more than one Web Service). Additionally,

2 XML Developer October 2001

security would need to be applied, to control who's
allowed to submit a new job posting.
The new job posting service, in my example, will
consist of the following elements:
e companylID: The ID of the company submitting
the job
e expireDate: The date when the posting ought
to expire
e jobTitle: The short title for the job
* jobDesc: The text describing the job
e jobPay: The yearly compensation offered for
this job

Creating the Web Service

For this article, I'll use the Microsoft SOAP Toolkit

2.0. If you want to create this version of the service,
you should download and install the toolkit, if you
haven’t done that already (you can find it at http://
msdn.microsoft.com/webservices/). The first step is to
create the COM object that will serve the requests for
job submittals and then expose this object to make it
accessible as a Web Service.

I'll create the COM object using Visual Basic 6. The
COM object will consist of one class and one function
that can be called to add jobs to our Job Bank system.
This function would look like this:

Public Function JobAdd(_

ByVal companyID As Integer, _

ByVal expireDate As Date, _

ByVal jobTitle As String, _

ByVal jobDesc As String, _

salaryAmount As Double) As String

If companyID = "1" Then

JobAdd = "Your job with title: " &

jobTitle & " and description: "
jobDesc & " was received " & _
"successfully on " & Now() & _
", The salary requested is: " & _
salaryAmount & " and the expiration" & _
"date of this posting is: " &
expireDate & "."

Else

JobAdd = "Your company is not allowed" &
" to post jobs to our Job Bank."
End If
End Function

&

This file is available in the Source Code file at
www.xmldevelopernewsletter.com, or you can create it
by using the code provided and compiling it with
Visual Basic 6. If you download the COM object, you'll
have to register it on the server by typing the following
command at the command prompt within the directory
where you have this file:

regsvr32 wsJobBank.dll

Within my code, I define the function that will be
called to add new job postings and the parameters that
will be passed in to the function. In the preceding code,
I specified that all parameters are “ByVal.” If I didn’t

http://www.xmldevelopernewsletter.com

do this, the parameters would have become both

input and output parameters within the SOAP
messages Generator. Typically, at this point, I’d have
code to call other modules that would handle the data
access and update. In order to make this service easier
to install, I've omitted that code. I do check for the
companylD, and if it’s the company with an ID of “1,”
the caller will get a confirmation of a successful job
posting (in production, you’d replace this with security
related code).

After creating the COM object, I used the WSDL
Generator utility provided with the SOAP Toolkit 2.0 to
generate the WSDL and WSML file for the created COM
object. The WSDL file describes the Web Service, and
the WSML file (specific to Microsoft) helps the system
map the Web Service to the COM object. Within the
WSDL Generator wizard, I named the Web Service
“wsJobBank” and provided the physical path to the
wsJobBank.dll. Then, I selected the service that I’d like
to expose—in this case, it’s only one: the JobAdd
service. As the listener URI, I provided “http://
localhost/wsJobBank/.” I used the 2001 version of the
XSD (XML Schema), and I decided to use the ISAPI
listener, which is recommended for most production-
level situations. Finally, I created a virtual directory
within the Web server (IIS, or Internet Information
Server) with the name of “wsJobBank” pointing to the
physical location where my WSDL and WSML files
are located.

Testing the Web Service with a Visual Basic client
The easiest way to test a Web Service is to create a
simple client within the same platform and language
environment to attempt calling the Web Service. In
this case, I created a simple Visual Basic 6 Standard
EXE project. The code to access the Web Service is
very short:

Private Sub txtExecute_Click()
Dim soapClient As MSSOAPLib.soapClient
Set soapClient = New MSSOAPLib.soapClient

soapClient .mssoapinit txtWSDL

txtResult.Text = soapClient.JobAdd _
(1, #12/31/2001 11:15:00 AM#,
"XML Project Manager", _
"Must have 10 years of technical " & _
"experience...", 80000)

Set soapClient = Nothing
End Sub

Within the preceding code, I initiated the Web
Service by supplying the WSDL file location to the
mssoapinit method of Microsoft’s soapClient object,
which handles the communication with the Service. The
soapClient object comes with Microsoft’'s SOAP Toolkit,
version 2. I've purposefully omitted the second and
third arguments to the mssoapinit method (the second

http://www.xmldevelopernewsletter.com

parameter is the name of the Web Service, useful

when more than one Web Service is present within the
WSDL file, and the third argument is the location of the
WSML file).

The first example of the issues involved appears
here in the way that I passed the date parameter. You
must have a way of submitting this value, so that the
soapClient knows it’s a date and not another type or a
variant. I’ve enclosed the data in hash marks (#). I
could also have used this:

CDate("12/31/2001 11:15:00 AM")

Once the soapClient knows that this is a date value,
it will convert it into the standard ISO 8601 date format
as required by SOAP (see www.iso.ch/markete/
8601.pdf for more information). This is the format of
the dateTime primitive datatype defined within the
XML Schemas specification (see www.w3.org/TR/
xmlschema-2/#dateTime). So the dateTime value,
when sent in the SOAP message, will have the format
YYYY-MM-DDThh:mm:ssZ. The “T” is the time
separator, and the “Z” at the end indicates the
Universal Time-Coordinated (UTC). If I didn’t specify
the time, Visual Basic would have stamped it with the
value for midnight (00:00:00). In this example, my UTC
was adjusted five hours ahead due to the time zone
where I'm located. In the final SOAP message, my data
parameter would look like this:

<expireDate>2001-12-31T16:15:00Z</expireDate>

It's important to pay attention to the datatypes
used and the format used to send them across the wire.
Datatype conversion is one of the most common
interoperability challenges when connecting Web
Services systems communicating across different
languages or platforms.

If you have to update your Web Service component
after you've initiated it, then you'll likely have to
unload it from the Web server’s memory (for example,
by restarting the IIS service). The ISAPI for my service
listener runs as an ISAPI extension to the WSDL file,
and when the Web Service is called, the ISAPI listener
loads the COM component in the memory space of the
Web application. This memory space might or might
not be the same as the memory space of the Web server,
depending on the application protection level that’s
been set for the Web application directory. In IIS, the
default is “Pooled,” which has the component running
in a common Web application space that’s separate
from the Web server itself.

Connecting from JScript and ASP
In the following code, you can see how to call the Web

XML Developer October 2001 3

Service from JScript running under ASP. Again, I've
used the SoapClient, and I set the location of the
WSDL file. The differences between this version and
the Visual Basic client are primarily in setting the
ServerHTTPRequest property of the SoapClient object
to true in order to specify that you're getting the WSDL
file via HTTP. If I'd decided to get the WSDL file from
the local file system, then I wouldn’t have had to set
this property.

After initiating the soapClient object, I set a few
HTML tags for the document, since it’s going to be
displayed in the browser, and then I called the JobAdd
operation of the JobBank Web Service. Keep in mind
that with ASP (in both JScript and VBScript), the
parameters are passed as Variants, but the soapClient
using the WSDL file properly converts them into a
particular datatype (although the actual datatype isn’t
specified explicitly within the SOAP message). For
example, the date is properly converted into the XML
Schema format. Here’s the JScript code:

<%@Language = "JScript"%>
<%
var objSoapClient =
Server.CreateObject ('MSSOAP.soapClient');
var strWSDL =
'http://localhost/wsJobBank/' +
'wsJobBank.WSDL"' ;

objSoapClient.ClientProperty
('ServerHTTPRequest') = true;
objSoapClient.mssoapinit (sStrWSDL);

Response.Write ('<HTML><HEAD><TITLE>JobBank' +
':Add Jobs Via JScript' +
'</TITLE></HEAD><BODY>The Response from ' +
'the Web Service is: ' + '

');

Response.Write (objSoapClient.JobAdd (1,
'12/31/2001 11:15:00 AM',

'XML Project Manager',

'Must have 10 years of technical ' +

'experience...', 80000));
Response.Write ('</BODY></HTML>');

objSocapClient = null;
%>

Connecting to the Web Service from the VBScript
client within ASP

Connecting to the Job Bank Web Service via VBScript is
very much the same as in the JScript example. I'm not
going to comment on this code:

<%@Language = "VBScript"%>
<%
Set objSoapClient = _
Server.CreateObject ("MSSOAP.soapClient")
sStrWSDL = "http://localhost/wsJobBank/" & _
"wsJobBank.WSDL"

objSoapClient.ClientProperty _
("ServerHTTPRequest") = True
objSoapClient.mssoapinit (strWSDL)

Response.Write ("<HTML><HEAD><TITLE>" & _
"JobBank: Add Jobs Via VBScript" & _
"</TITLE></HEAD><BODY>The Response " & _
"from the Web Service is: " & "

")

Response.Write (objSoapClient.Jobadd (1, _

4 XML Developer October 2001

"12/31/2001 11:15:00 AM", _

"XML Project Manager", _

"Must have 10 years of technical " & _

"experience...", 80000))
Response.Write ("</BODY></HTML>")

Set objSoapClient = Nothing
%>

In using this Job Bank Web Service, you're not
limited to the COM-based languages, such as Visual
Basic, or even JScript and VBScript (found in ASP or
within the Windows Scripting Host environment). You
can call this Web Service using any other language
and/or platform. To demonstrate, I'll show you how to
access this service with Perl.

Connecting from a Perl client

[used ActiveState’s ActivePerl 5.6 (see http://
aspn.activestate.com/ASPN/Downloads/ActivePerl/),
but you should be able to use any version of Perl 5.004
or later. The SOAP implementation that I'll use is
SOAP::Lite, a Perl implementation by Paul Kulchenko.
You can find both Win32 and UNIX versions of
SOAP::Lite at www.soaplite.com, where you’ll also find
all of the installation instructions, documentation, and
so on. The code starts as follows:

use SOAP::Lite;

print "HTTP/1.0 201 Ok \n";

print "Content-type:text/html\n\n";

print "<HTML><HEAD><TITLE>JobBank:".
"Add Jobs Via PERL";

print "</TITLE></HEAD><BODY>The Response ".
"from the Web Service is: ";

print "

";

First, I simply set the HTTP headers, because I'd
like to call this Perl script from within the browser
instead of on the server as I did with ASP. Then, I set
the beginning of the HTML document.

In the Perl version of the code, I call the SOAP::Lite
object. I specify the namespace URI used (you can get it
from the WSDL file) and the action HTTP header (this
has to match to the SOAPAction attribute of the
<soap:operation> element within the WSDL file). The
proxy setting provides the address to the Web Service
(this is the URL to the WSDL file, since I'm using the
ISAPI listener) and points to port 8080. If the Web
server that hosts the Service listens to the standard port
80, then you can omit this port value. Otherwise,
change the value to the port number to which the Web
site that hosts the Web Service is listening. For your
testing, if you're going to change the port number from
8080, you ought to change this value within the WSDL
file provided in the Source Code file. Within this file,
this means modifying the location attribute of the
<soap:address> element from 8080 to your own value.
Keep in mind that the Trace Utility provided with the

Continues on page 14

http://www.xmldevelopernewsletter.com

Connecting to Web Services...

Continued from page 4

Microsoft SOAP Toolkit 2 requires you to specify a port
number other than 80, such as 8080, in order to trace
the actual SOAP messages that are sent between the
client and the server.

Finally, I invoke the JobAdd operation on the Web
Service and provide it with values for all of the
parameters. In some situations, you might be able to
point Perl to your WSDL file so that it will be able to
figure out the types for all of your parameters (since
Perl, in essence, is a typeless language). However, in
this case, probably due to using the ISAPI listener, I had
to manually specify the types and names for each one
of the parameters, which made the code little longer
than it would have been:

print SOAP::Lite
->uri ("http://tempuri.org/message/")
->on_action(sub { return
""http://tempuri.org/action/clsJobs.JobAdd"'})
->proxy ("http://localhost:8080/wsJobBank/".
"wsJobBank.WSDL")
->JobAdd (SOAP::Data->type(short => 1)->
name ('companyID'),
SOAP: :Data->type(dateTime =>
'2001-12-31T16:15:00Z')->
name ('expireDate'),
SOAP: :Data->type(string =>
'XML Project Manager')->
name ('jobTitle'),

14 XML Developer October 2001

SOAP: :Data->type(string =>
'"Must have 10 years of technical '.
'experience...')->name('jobDesc'),
SOAP: :Data->type(double => 80000)->
name ('salaryAmount'))
->result;
print "</BODY></HTML>";

You’'ve now seen how to create a sample Web
Service with the Microsoft’s SOAP Toolkit 2 and Visual
Basic 6. And you’ve seen how this service interoperates
not only with Visual Basic clients, but also with
scripting clients such as JScript, VBScript, and Perl. I
pointed out some common issues around the data types
being passed (such as the “date” datatype). In future
articles on Web Services connectivity, I'll take this same
Job Bank Web Service and port it to Java (among other
languages) and call it using yet different languages
and platforms. A

INTEROP1.ZIP at www.xmldevelopernewsletter.com

Zoran Zaev works as a senior Web solutions architect for Hitachi’s
solutions division. He enjoys helping others realize the potential of
technology, and when he isn't working, he spends considerable time
writing articles such as this one and books (for example, he co-authored
Professional XML Web Services, from Wrox Press). Zoran's research interests
include complex systems that often involve XML and highly distributed
architectures, as well as the application of these concepts in newer areas
such as biotechnology.When not programming or thinking of exciting
system architectures, you'll find Zoran traveling, reading, and exploring
various learning opportunities. zzaev@yahoo.com.

http://www.xmldevelopernewsletter.com

